
46 GRINDING MILL LINER MONITORINGABB REVIEW 03|2019 47AUTONOMOUS SYSTEMS

—
AUTONOMOUS SYSTEMS

Machine learning  
solves grinding mill liner 
 monitoring
To prevent ore from wearing out grinding mill drums, replaceable 
liners are inserted. ABB and Bern University of Applied Science have 
 developed a liner wear monitoring system based on accelerometers 
and machine learning that identifies the best time to change the liner 
and thus reduce downtime costs.

measure wear. Accordingly, ABB and The Institute 
for Intelligent Industrial Systems (I3S) at Bern 
University of Applied Science, conducted harmonic 
response and transient simulations to investigate 
this behavior. The results showed clearly that the 
amplitude of the acceleration signal from a worn 
liner is higher than that from a new liner.

—
It is economical to change the 
liner as late as possible, but 
also at  a time that minimizes 
productivity loss.

To verify these findings and because access 
to a real ore mill is difficult, a scale model of 

experimental measurements with different 
liner thicknesses were performed by ABB and 
I3S. All measurement data was analyzed with 
deep neural networks and classified with a high 
accuracy in the correct wear classes.

To transfer this process from the lab to a real mill 
environment, measurements were made at a real 
ore mill. With this data, I3S and ABB developed 
a prototype that allowed the liner condition and 

In large mines, ore is milled onsite to extract 
valuable minerals. The grinding mills that perform 
this extraction consist of a large drum in which 
the ore itself, and sometimes added steel balls 
too, carry out the physical grinding process. As the 
drum rotates, the ore/balls are lifted up the side 
of the drum’s interior by vanes to the cascading 
angle, where they fall off and crash to the bottom, 
reducing the ore.

drum is an expensive piece of kit. To prevent 
damage to the drum, metal or rubber liners are 
inserted. The costs of liner replacement are high 
due to mill downtime and replacement parts 
so it is economical to change the liner as late 
as possible, but also at a time that minimizes 
productivity loss. To achieve this goal, it is 
important that the actual liner wear is known. 
The wear can be measured from inside the 
mill but this requires a costly production stop. 
A method to detect wear during operation is 

Vibration monitoring
As the ore hits the liner, vibrations arise. These 
vibrations and their transfer function have 
been shown to change with liner thickness and 
this effect underlies a promising method to 
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wear in high-throughput 
grinding equipment is 
critical if process uptime 
is to be maximized. The 
image shows the mill 
at the Boliden mine at 
Garpenberg, Sweden 
– where mining has 
been carried out since 

mill contributes to the 
mine’s production figure 
of 2.5 million tonnes of 
ore per year. 
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To find the toe and shoulder angle, the information 
entropy of the signal is calculated. The entropy 
of the signal (over a certain moving window) 
represents the amount of information contained 
in the signal [3]. In other words, the more random 
and unpredictable the acceleration signal due 
to the impacts is, the greater its entropy will 
be. Thanks to this calculation, changes in the 
acceleration signal and thereby the toe and 
shoulder angle can be detected. An important 
parameter is the window length of the calculated 
index. For this data, a window length of 

—

With an adapted deep neural 
network based on Tensorflow, 
the results from the field test 
measurements also showed 
a relatively high accuracy: 
82.9 percent.

Liner wear
The measurement of the liner thickness was made 
indirectly by acceleration sensors at the outer 
surface of the scale model drum. 

The raw signal from these sensors was processed 
to extract features that can be used by a deep 
neural network to recognize patterns. The 
”patternnet” (ie, pattern recognition network) 
used includes one input layer, three hidden layers 
each with 500 neurons and an output layer to 
classify the liner thickness.

—
The results showed a very high 
accuracy (close to 98 percent) 
for the scale model measurements 
– ie, only 2 percent of the 
measurement datasets were 
classified falsely.

This configuration was used to classify the data 
from the scale model as well as from the field 
tests. In the laboratory, seven different liner 
conditions on the scale model were simulated. 

loads reflect these conditions. The goal was to 
classify the preprocessed raw signal in one of 
the corresponding seven classes. The results 

for the scale model measurements. This means 
that only 2 percent of all the measurement 
datasets were classified falsely. This reflects the 

matrix of classification. Furthermore, data that 
is not correctly classified appears near to the 
matrix diagonal, which means the classification 
error is small.

The results from the field test measurements also 
showed a good accuracy. It was to be expected 
that the accuracy would be significantly lower 
here because of environmental effects but with an 
adapted deep neural network based on Tensorflow 

achieved. The goal is to improve accuracy further 
with more data.

Toe and shoulder angles
To determine the cascading angle in the ore mill, 
the acceleration signal data from one turn of the 

from one rotation is visible. In the impact zone, 
where stones hit the liner, high amplitudes are 
visible. Also, in the region of the shoulder angle, 
where the stones leave the liner, signal changes 
are visible. These arise because, in the area of the 
shoulder angle, the ore pieces lie loosely on top of 
each other. The gravity vector is shifting in relation 
to the position of the ore and the ore starts to 
leave the ore bed by sliding towards the center of 
the ore bed, creating vibrations at the mill shell. 

process parameters of a mill to be measured 
during operation.

Simulations
Harmonic response and transient finite element 

and worn-out liner models reinforced the idea 
that there is a measurable difference in the liner 
acceleration signal caused by ore impact at the 
drum wall between a new and a worn-out liner. 
For example, the frequencies from a worn liner 
are higher than those from a new liner. In effect, 
as the rubber wears, the damping properties 
decline. The main measurable differences in 

correlates to the theory that a thin rubber layer 
gives rise to a stronger impact, resulting in higher 
excitation forces.
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02 Scale model

02a Scale model of 
an autogenous mill 
for experimental 
measurements in the 
lab. The model consists 
of a steel drum, driven 
by a toothed belt 
connected to a small 
electrical motor. The 
drum interior is covered 
with an interchangeable 
rubber layer to simulate 
the liner.

2b Function sketch of 
scale model with toe 
and shoulder angle 
and WLAN acceleration 
sensor. The sensor is 
placed on the outer 
surface of the drum to 
measure the vibration. 
The acceleration signal is 
the dependent variable; 
liner thickness and mill 
load are independent 
variables; and revolution 
speed, temperature, 
stone size and stone 
quality are controlled 
variables. Different 
measurements with 
2 to 17 mm liner thickness 
and from 1 to 4 kg mill 
load was made. For each 
condition, at least two 
acceleration measure-
ments of 2 min with a 
sampling frequency at 
970 Hz were made.

—
03 Simulated accele-
ration signals from 
transient simulation of 
a new liner and a worn 
liner. The acceleration 
signal of the worn liner 
has higher amplitudes 
and frequencies from 
less damping.

—
04 Confusion matrix of 
liner thickness classifi-
cation in seven classes 

from measurements on 
mill scale model.
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Data analysis with machine-learning techniques 
The raw vibration signal is very noisy due to the many 
impacts recorded when the mill is rotating and it is 
difficult to distinguish the various liner conditions. 
Therefore, raw data preprocessing is necessary. Only 
with a standardized data basis it is possible to apply 
machine learning algorithms. Over many iterations, 
the best classification model was sought.

Preprocessing the data 
Because the measurement starting points are 
not the same every time, there are differences 
between the datasets. But for a proper evaluation 
it is necessary to have a uniform data basis. For 
this reason, a phase detector was included in the 
setup. The original signal was filtered through a 
low-pass filter (2 Hz cut-off frequency) and then a 
curve fitting and a detrending was applied. It was 
possible to determine the phase in the detrended 
and filtered data. This phase was then used to 
shift the original data so that all data sets have the 

training employed a “scaled conjugate gradient 
backpropagation” – effectively a method that 
updates critical model parameters (neuron weights 
and bias) on the way through in an iterative fashion. 
Finally, a fine tuning of the network hyperparameters 
(ie, impactful parameters not tuned in the core 
model) that delivered an optimal neural network 
setting and enabled the liner condition to be 
determined reliably.

—

Thanks to the system, it will 
be possible to replace liners 
depending on their condition, 
which reduces downtime and 
costs while saving resources.

Liner monitoring for increased productivity and 
reduced costs
The hypothesis that the acceleration signal 
changes significantly with liner thickness was 
confirmed with simulations, and measurements 
on the scale model and on a real mill. 
The monitoring system developed by I3S and 
ABB shows how acceleration sensors and machine 
learning techniques can then be used to measure 
the condition and process parameters of a mill 
during operation. Thanks to the system, it will 
be possible to replace liners depending on their 
condition, which reduces downtime and costs 
while saving resources. This new monitoring 
system will help mill operators increase 
productivity and plan maintenance. •

Field tests
To verify the mathematical models, field tests 
were carried out. The sensitive sensor equipment 
was protected from the harsh and dirty mill 
environment by a robust metal enclosure. The 
equipment includes a battery, timer, several 
acceleration sensor drivers, an analogue-to-digital 
converter and a data acquisition device. The 
acceleration sensors themselves were mounted 
with magnets directly on the mill drum and their 
cables led back to the box. The enclosure was 
mounted on a fully operational mill and left to 
collect data for several weeks.

After the phase shifter, the data from the 2 min 
measurements made was divided into slices 
representing one drum revolution. Additionally, 

raw data preprocessing ensured a consistent data 
basis for the machine-learning algorithm.

Feature extraction 
Machine-learning algorithms try to map a set of 
features to the correct target values. The right 
choice of these features is thus very important. 
Different features were tested, eg, wavelets, 
entropy and Fourier analysis. The best result was 
achieved with a combination of statistical values, 
the raw acceleration data and the FFT (fast Fourier 
transform) of each slice. All these features were 
combined into a table with the corresponding 
target value. This table is used as input matrix for 
the neural network.

Building a neural network for pattern recognition 
To classify the data, different machine-learning 
methods such as support vector machines, 
decision trees or neural networks were tested. The 
best results were achieved with neural networks. A 
neural network should recognize patterns in each 
signal. These patterns help to classify the signal 
into a target class. Classes were built for all the 
measurements derived from the different mill load 
and liner thickness test runs.
 
After the definition of the classes, the input and 
output matrices for the neural network were 
constructed. The input matrix includes the feature 
table described above and the output matrix 
defines the correct target class for each feature 
set. Then a neural net [4] with three hidden layers 
each with 500 neurons and an output layer, for 
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05 Polar plot of toe and 
shoulder angles from 
one turn at a real ore 
mill.

—

acceleration data. 
The shifted signal 
is calculated by the 
original signal and the 
detrended and filtered 
signal.

—

for liner thickness 
classification.
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—
The raw vibration signal is 
very noisy due to the many 
impacts recorded when the 
mill is rotating, so raw data 
reprocessing is necessary.


