Prof. Dr. Horst Heck
Profil
Prof. Dr. Horst Heck Dozent
-
Adresse
Berner Fachhochschule
Technique et informatique
Lehre
Quellgasse 21
2501 Biel
Projets
Autres projets
SCCER FURIES, Digitalisation, "An Accurate Hybrid ML Model for Residential Electricity Load Profile and Local PV System Generation"
FrontRunner, Routenoptimierung bei der Abfallentsorgung, mit Stadt Burgdorf, SDSC, Brunata
Mikroklimas für nachhaltige Ökosysteme, mit Valère Martin (HAFL)
Publications
Journal Papers
Choudhury, A.P.; Heck, H. Increasing stability for the inverse problem for the Schrödinger equation. Math Meth Appl Sci. 2018; 41: 606– 614. https://doi.org/10.1002/mma.4632
Heck, H.; Wang, J.-N. Optimal stability estimate of the inverse boundary value problem by partial measurements, Rendiconti dell'Istituto di Matematica dell'Università di Trieste, 48, S. 369-383. Instituto di Matematica dell'Universita di Trieste 10.13137/2464-8728/13164, (2016)
Geissert, M.; Heck, H.; Trunk, Chr. H∞-calculus for a system of Laplace operators with mixed order boundary conditions, Discrete and Continuous Dynamical Systems - Series S, 6 5 1259- 1275, (2013).
Heck, H.; Kim, H.; Kozono, H., Weak solutions of the stationary Navier-Stokes equations for a viscous incompressible fluid past an obstacle. Math. Ann. 356 (2013), no. 2, 653–681.
Heck, H.; Kim, H.; Kozono, H., On the stationary Navier-Stokes flows around a rotating body. Manuscripta Math. 138 (2012), no. 3-4, 315–345.
Geissert, M., Heck, H., Hieber, M., & Sawada, O. (2012). Weak Neumann implies Stokes, Journal für die reine und angewandte Mathematik, 2012(669), 75-100. doi: https://doi.org/10.1515/CRELLE.2011.150
Geissert M., Heck H. (2011) A Remark on Maximal Regularity of the Stokes Equations. In: Escher J. et al. (eds) Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol 80. Springer, Basel. https://doi.org/10.1007/978-3-0348-0075-4_14
Horst Heck, Gen Nakamura and Haibing Wang, Linear sampling method for identifying cavities in a heat conductor, 2012 Inverse Problems 28 075014
Heck, H., M. Hieber und K. Stavrakidis: L ∞ -estimates for parabolic systems with VMO-coefficients. Discrete Contin. Dyn. Syst. Ser. S, 3(2):299–309, 2010.
Geissert, M., H. Heck, M. Hieber und O. Sawada: Remarks on the L p -approach to the Stokes equation on unbounded domains. Discrete Contin. Dyn. Syst. Ser. S, 3(2):291–297, 2010.
Heck, H., H. Kim und H. Kozono: Stability of plane Couette flows with respect to small periodic perturbations. Nonlinear Anal., 71(9):3739–3758, 2009.
Heck, H.: Stability estimates for the inverse conductivity problem for less regular conductivities. Comm. Partial Differential Equations, 34(1-3):107–118, 2009.
Heck, H., X. Li und J.-N. Wang: Identification of viscosity in an incompressible fluid. Indiana Univ. Math. J., 56(5):2489–2510, 2007.
Heck, H., G. Uhlmann und J.-N. Wang: Reconstruction of obstacles immersed in an incompressible fluid. Inverse Probl. Imaging, 1(1):63–76, 2007.
Haller-Dintelmann, R., H. Heck und M. Hieber: L p -L q estimates for parabolic systems in non-divergence form with VMO coefficients. J. London Math. Soc. (2), 74(3):717–736, 2006.
Heck, H. und J.-N. Wang: Stability estimates for the inverse boundary value problem by partial Cauchy data. Inverse Problems, 22(5):1787–1796, 2006.
Geissert, M., H. Heck und M. Hieber: L p -theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle. J. Reine Angew. Math., 596:45–62, 2006.
Geißert, M., H. Heck und M. Hieber: On the equation div u = g and Bogovskiı̆’s operator in Sobolev spaces of negative order. In: Partial differential equations and functional analysis, Band 168 der Reihe Oper. Theory Adv. Appl., Seiten 113–121. Birkhäuser, Basel, 2006.
Geissert, M., H. Heck, M. Hieber und I. Wood: The Ornstein-Uhlenbeck semigroup in exterior domains. Arch. Math. (Basel), 85(6):554–562, 2005.
Haller, R., H. Heck und M. Hieber: Muckenhoupt weights and maximal L p - regularity. Arch. Math. (Basel), 81(4):422–430, 2003.
Heck, H. und M. Hieber: Maximal L p -regularity for elliptic operators with VMO-coefficients. J. Evol. Equ., 3(2):332–359, 2003.
Haller, R., H. Heck und A. Noll: Mikhlin’s theorem for operator-valued Fourier multipliers in n variables. Math. Nachr., 244:110–130, 2002.